bonjour j'ai du mal avec cet exercice qui peut m'aider ? f est la fonction définie sur R par f(x)=(ax+b)e^cx où a,b et c désignent des nombres réels. C, est la
Question
bonjour j'ai du mal avec cet exercice qui peut m'aider ? f est la fonction définie sur R par f(x)=(ax+b)e^cx où a,b et c désignent des nombres réels. C, est la courbe représentant f dans un repère. C passe par les points A(3/2 ;0) et B(0 ; -3) et C admet une tangente horizontale au point d’abscisse 7/4.
a) Traduire les données de l’énoncé en utilisant f et sa dérivée f’.
b) exprimer f’(x) en fonction de a, b et c
c) montre que a,b et c vérifient le système :
3/2a+b=0
b= -3
a+7/4ac+bc =0
d) en déduire a, b et c puis l’expression de f(x).
2 Réponse
-
1. Réponse Anonyme
La dérivée de f c'est a*e^cx+c(ax+b)e^cx soit (acx+bc+a)e^cx
A est sur la courbe donne : 0=(3a/2+b)e^3/2
B est sur la courbe donne : -3=be^0 soit b=-3
on a déjà (3a/2-3)=0 donc a=2 et f(x)=(2x-3)e^cx et f'(x)=(2cx+2-3c)e^cx
comme f f'(7/4)=0 il vient que 2c(7/4)+2-3c=0 donc c=-4
finalement f(x)=(2x-3)e^(-4x)
-
2. Réponse philou70
a) A(3/2 ;0)∈(C) d'où f(3/2)=0
et B(0 ; -3) ∈(C) d'où f(0)=-3
et C admet une tangente horizontale au point d’abscisse 7/4 d'où f'(7/4)=0
b) f'(x)=a*e^cx+c(ax+b)e^cx=(acx+bc+a)e^cx
c) f(3/2)=0 : 0=(3a/2+b)e^3/2
f(0)=-3 : -3=be^0 soit b=-3
or (3a/2-3)=0 donc a=2
f'(7/4)=0 : )2c(7/4)+2-3c)e^(7/4)=0 => 2c(7/4)+2-3c=0 donc c=-4 (car e(u)>0)
donc f(x)=(2x-3)e^(-4x)